Working Bionic Ears With A 3-D Printer

Working Bionic Ears With A 3-D Printer

Researchers used 3-D printing of cartilage cells and nanomaterials to create functional ears that receive radio signals. The study demonstrates that it may one day be possible to create bionic tissues and organs.

 In tissue engineering, cells and other materials are used to improve or replace the body’s tissues, such as bone and cartilage. Currently, however, it’s difficult to create 3-D structures for use in the body, especially organs with complex geometries, such as ears.

To overcome this problem, a research team led by Dr. Michael McAlpine at Princeton University and Dr. David Gracias at Johns Hopkins University turned to additive manufacturing, or 3-D printing. In this process, a 3-D object is ‘printed’ by laying down successive layers of material in a pattern based on a digital model.

The researchers used a computer-aided design (CAD) drawing of a human right ear as a blueprint for the printing. They used 3 components as the printer “inks”: cartilage cells in a hydrogel matrix, structural silicone, and silicone infused with silver nanoparticles. e ear was built layer by layer with an ordinary 3-D printer, with the silver-infused “ink” forming a coiled antenna.


 Get The Latest By Email

Weekly Magazine Daily Inspiration

Over a 10-week period in culture conditions, the hydrogel component of the printed ear was reabsorbed, and the cells developed an extracellular matrix, turning the ear opaque.

The researchers characterized the biochemical, mechanical and functional properties of the ear. They found that the “cyborg ear” could receive signals in a wide radio frequency range, with the inductive coil acting as a receiving antenna. e signal frequencies ranged from 1 MHz to 5 GHz.

To demonstrate the versatility of the approach, the researchers flipped the CAD design and created a complementary left ear. They exposed the ears to antenna signals of left and right stereophonic audio, collected the signals received by the ears, fed them into a digital oscilloscope, and played the resulting audio signals through loud speakers. The system produced high-quality audio, as demonstrated by a rendition of Beethoven’s Für Elise.

In general, there are mechanical and thermal challenges with interfacing electronic materials with biological materials," says McAlpine. Our work suggests a new approach—to build and grow the biology up with the electronics synergistically and in a 3-D interwoven format.

This proof-of-principle study shows that tissues and electronics can be combined to form hybrid, bionic organs. The team now plans to incorporate other materials to allow the ear to register acoustic sounds. 3-D printing could expand the opportunities for creating a new generation of implants and prostheses to restore—or even enhance—human capabilities.

Article Source: NIH Research Matters

More By This Author

AVAILABLE LANGUAGES

English Afrikaans Arabic Chinese (Simplified) Chinese (Traditional) Danish Dutch Filipino Finnish French German Greek Hebrew Hindi Hungarian Indonesian Italian Japanese Korean Malay Norwegian Persian Polish Portuguese Romanian Russian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese

Monday, 07 June 2021 08:07

Injury to the adult brain is all too common. A brain injury will often show up on brain scans as a well-defined area of damage. But often the changes to the brain extend far beyond the visible...

Sunday, 23 May 2021 08:15

We sometimes need to use antibiotics to treat sick animals, but taking advantage of opportunities to reduce antibiotics use could benefit everyone

Saturday, 08 May 2021 08:43

Humanity has always had a rocky relationship with wasps. They are one of those insects that we love to hate. We value bees (which also sting) because they pollinate our crops and make honey

Wednesday, 26 July 2023 12:55

With the rising cost of living, gyms memberships and fitness classes are becoming increasingly unaffordable. But the good news is you can make just as much progress at home.

Wednesday, 19 May 2021 09:40

To “cry poor mouth” is an expression used to habitually complain about a lack of money. A literal poor mouth, however, represents one of the most widespread global diseases: tooth decay.

Tuesday, 25 July 2023 16:09

Volunteering in late life may be more than just a noble act of giving back to the community; it could be a critical factor in safeguarding the brain against cognitive decline and dementia.

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.